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THE DIAMETER OF §-PINCHED MANIFOLDS

KATSUHIRO SHIOHAMA

0. Introduction

It is interesting to investigate the manifold structures of a complete rieman-
nian manifold whose sectional curvature is bounded below by a positive con-
stant. As is well known such a riemannian manifold is compact and we may
suppose that its sectional curvature K, satisfies 0 < § < K, < 1 for every plane
section ¢. Berger proved in [2] and [3] that a complete, simply connected and
even dimensional riemannian manifold with § = 1/4 is homeomorphic to a
sphere, or otherwise M is isometric to one of the compact symmetric spaces of
rank one. For arbitrary dimensional riemannian manifolds, Klingenberg proved
in [8] that a complete and simply connected riemannian manifold with § >
1/4 is homeomorphic to a sphere. Moreover, Berger claimed in [4] that M is
a homology sphere if the diameter d(M) of M satisfies d(M) > =/(2+/5) for
0<o< 1.

Since the diameter d(M) of a §-pinched manifold M plays an important role
in the proofs of these interesting results mentioned above, it might be significant
to investigate the relationship between the manifold structure of M and its
diameter d(M) of a §-pinched riemannian manifold.

One of our main results obtained in the present paper is:

A connected and complete riemannian manifold with § = 1/4 is homeo-
morphic to a sphere if the diameter d(M) of M satisfies d(M) > =.

For a simply connected riemannian manifold with § = 1/4, Klingenberg
claimed in [9] that the distance d(p, C(p)) between any point p € M and its cut
locus C(p) is no less than =, and M is either homeomorphic to a sphere or M
is isometric to one of the compact symmetric spaces of rank one. However the
proof stated in [9] seems to us to-be incomplete’.

As the main theorem, it will be proved that a three dimensional, connected,
complete and orientable riemannian manifold with § > 1/4 is isometric to the
lens space L(1, k) of constant curvature 1, if M has a closed geodesic segment
I with the length ¥ (I") = 2rn [k and the fundamental group = (M) of M satis-
fies 1, (M) = Z,, where k is an odd prime.

Definitions and notations are given in § 1. In § 2, we shall give an estimate

Communicated by W. P. A. Klingenberg, October 13, 1969.
1 Added in Proof. Recently J. Cheeger proved this theorem completely.
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of the distance between some point p on a d-pinched riemannian manifold
and its cut locus C(p), which plays an important role in a proof of a sphere
theorem stated above, and the sphere theorem will be proved in this section.
In § 3, we shall study some estimates of cut loci of §-pinched riemannian mani-
folds which are not simply connected. In § 4, we shall investigate some topolo-
gical structure of a §-pinched riemannian manifold with § > 1/4 whose funda-
mental group satisfies 7,(M) = Z,. In the last section, we shall prove our main
theorem stated above.

1. Definitions and notations

Throughout this paper let M be a connected, complete and differentiable
riemannian manifold of dimension n(n > 2), whose sectional curvature K, satis-
fies 0 <5 < K, <1 for every plane section ¢. Geodesics in M are parametrized
by arc-length, and the tangent space at a point x ¢ M is denoted by M. Let u
and v be tangent vectors at x, and denote by {u, > the inner product of « and
v with respect to the riemann metric tensor of M and by d the distance function
of M. For a geodesic segment I” = {y(9)} (0 < ¢ < D), the length of I” is denoted
by £ (") which is equal to I. A geodesic triangle (I", 4,®) in M is a triple of
shortest geodesic segments each of which is not a constant geodesic. For a
geodesic triangle (I', 4, @) let (I'*, A*, @*) be the geodesic triangle in S },,5
satisfying L(I™) = (M), L(4*) = L(A) and L(@*) = £ (P), where Sk
denotes the k-sphere with radius r in a euclidean space R**!. We shall call
(I'*, A*, @*) the corresponding triangle of (I, 4, @) in 8},,3. The universal
covering manifold of M is denoted by M and the projection map by n. The
diameter d(M) of M is defined by d(M) = sup {d(x,y)|x,y e M}.

Let G be the cyclic group of order ¥ whose generator g is given by g =

[R(l/ k) R(J k)]’ where & is an odd prime and R(§) means the rotation of R®

Lo _ [ cos2r@ sin2xn6
which is defined by R(6) = [_Sin orf sinr 0]. The lens space L(1,k) of

constant curvature 1 is defined by L(1, k) = S}/ G where & is an odd prime,

2. An estimate of cut locus of certain 3-pinched manifold

In this section, we shall give an estimate of the distance between some point
x € M and its cut locus C(x) where the diameter d(M) of M satisfies d(M) >
7/(24/5). Our technique does not hold for all points of M but for some pair
of points x,y ¢ M satisfying d(x,y) > =/(2+4/8) for any 0 < § < 1.

First of all, we shall prove the following proposition.

Proposition 2.1. If the diameter d(M) of M satisfies d(M) > n/(2+/8) for
any 0 < 8 < 1, then M is simply connected.

Proof. Suppose that M is not simply connected. Let p and g be the points
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in M such that d(p, q) = d(M). There are at least two points p, and j, in M
satisfying z(p,) = =(p,) = p. By completeness of M, there exists a shortest
geodesic 6 = {6(1)} (0 < 1 < ) satisfying H(0) = p,, () = p,and L) = I =
d(p,, p). Putting ® = 706, we have a geodesic I" = {r(8)} (0 < t < d(M))
such that y(0) = p, y(d(M)) = ¢ which satisfies {7'(0), #(0)> > 0, where 7’(t)
denotes the tangent vector of I” at y(f). Then, there is a geodesic I in M
which satisfies I' = o I" and 70) = py, fdM)) =G ¢ M. Consider a geodesic
triangle (I, @, A) in M where / is a shortest geodesic joining § to p,. Assume
that the perimeter of (I, 8, A) is less than 2r/4/ 8, and let (I'*, ®*, A*) be the
corresponding geodesic triangle of (I, 8, 4) in S%,,5. Then by virtue of the basic
theorem on the triangles of Toponogov, every angle of (I°, 8, /) is not less than
the corresponding angle of (I"*, 8*, 4*). Hence we have < *(0), 6%(0) <
I (7(0),4(0)) < z/2. On the other hand, the inequality £(4) > £(I") >
x/(2+/5) implies that J (+*/(0), 6*/(0)) > = /2, giving a contradiction. There-
fore the perimeter of (I, 8, 4) must be 27/« 6. Then Theorem 4 of [13] im-
plies that M is isometric to the n-sphere S7,,5 of radius 1/4/3. Making use of
the inequality < (/(0), #(0)) < /2, was see that Z(I") = £(A) + L) =
w/¥ 8ot 2(0) = L) + Z(D) = z/v/5. If L) = x/v/3, then L(I) =
d(M) = x/+/é implies that M is isometric to S7,,5. If £(6) = L") + L)
= n/+/§ holds, we have £ (I") < z/(2v/ ) from Z(I") < £(1), which is a
contradiction.

Theorem 2.2. For any pair of points x,y in M satisfying d(x,y) > z/(24/5),
we have d(x,C(x)) > = and d(y, C(¥)) > = where C(x) denotes the cut locus
of x.

Proof. 1t § satisfies § > 1/4, Proposition 2.1 and a theorem of Klingenberg
[8] imply the statement. Suppose that d(y, C(y)) = p < « holds for some pair
of points x,y satisfying d(x,y) > x/(2+/8). We shall derive a contradiction,
and need only to consider § satisfying § < 1/4. By the hypothesis p < z and
an elementary property of cut locus, there is a closed geodesic segment 5 =
{o(0} (0 < t < 2p) such that ¢(0) = a(2p) = y. For any t¢ [0, 2p], we get
d(x,e(t)) > d(x,y) — d(y, a())) > n/(24/3) — = > 0 which shows that x¢ 3.
Then there exists a point z on X satisfying d(x, z) = d(x, ). Suppose that
z # y. Then by virtue of the second variation formula [1, Proposition 3], we
have d(x, 3) < x/(2+/8). The points y and z divide 3 into two subarcs. Let 5
be the shorter subarc, @ and A be the shortest geodesics from x to y and x to
z respectively, and (@*, 3*, A%) be the corresponding geodesic triangle of (&,
3, A)in 82, 5. Then the inequalities Z(9*) > x/(2v 3), L(E*¥) < p < 7/ (2V/3)
and £ (A*) < n/(2+4/6) imply that the angle between 3* and A* is greater than
7 /2, which contradicts the basic theorem on triangles.

Therefore we must have y = z, and we have immediately d(x, a(¢)) > d(x,y)
for all ¢ (0, 2p). Putting y, = a(p) and d(y,, C(y))) = p,, we get p, < p from
ye C(y) and d(x,y;) > d(x,y) > /(24 5). There is a closed geodesic segment
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2 ={a(} (0 < t < 2p,) such that ¢,(0) = ¢,(2p,) = ¥, and x ¢ X and therefore
we have.the same argument for 5, as for 2. If 2| is a closed geodesic, the
second variation formula stated above implies that the nearest point z,¢ 2, to
x is different from y,, and the same discussion for the geodesic triangle with
vertices (x, ¥,,Z,) leads a contradiction. Hence we only consider 2, being a
closed geodesic segment and satisfying d(x, ¢,(2)) > d(x, y,) for all z€(0,2p,).
Putting again y, = a,(p,) and p, = d(3,, C(y,), there is a closed geodesic
segment 3, = {0,()} (0 < t < 2p,), where we have p, < p, < p <= and
d(x,y,) > d(x,y) > d(x,y) > n/(2v/ ). Repeating this argument, we have
the sequences of points, closed geodesic segments and real numbers as follows:

YsXYir Yo n v v s

2,21,22,... s

OZ P05

d(x,y) < d(x,y) <d(x,3) <, - .

Since M is compact, the last sequence satisfies d(x, y,) < d(M) for all k, from
which d(x, y,) has a limit and we can choose a subsequence of {y,} converging
to some point y* in M by compactness. Because the function p — d(p, C(p))
is lower semi-continuous, we have lim g, > p* where p* = d(y*, C(y*)).

On the other hand, there is a shortest geodesic @,_, from x to y,_,, and for
any fixed @, we have the subarc $,_, of ¥,_, which starts from y,_, and ends
at y, with the property that the angle between @, and 3,_, at y, is no greater
than /2. Let (0}, 3% ., ¥) be the geodesic triangle corresponding to (@,_,,
3, ,®,) in S5, where we denote &, = ® and 3, = 3, and let o, be the
angle between @ and 3% ,. Then we get a; < x/2 for all i. By the spherical
trigonometry, it follows that

cos (d(x, y;_ IV 8) — cos (d(x,y)+/8)-cos (p;_ ./ 5)
= sin (p,_,+/8)-sin (d(x, y)¥/ 8)-cos e, > O,

which implies cos (d(x, y;_,)¥/8) > cos (d(x, )/ 8)-cos (p;,v/ ), for all i.
Therefore it follows clearly that

cos (d(x, y)v/8) > cos (d(x, y)4/8)-cos (pv/ ) > cos (d(x, y)V'5)
11 €08 (pi-/3) 2 cos (d0x, yIW3)-(cos (VN , k=12, .

Hence we must have cos (d(x, )4/ 8) > 0, so that d(x,y) < =/(2v/5), a con-
tradiction. g.e.d.

In order to estimate the distance betweem a point pe M and its cut locus
C(p), the simply connectedness of M is the essential hypothesis for the argu-
ments developed in [7],[8] and [9]. We note that the technique of a proof of
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Sphere Theorem investigated by Klingenberg need not the estimate d(x, C(x))
> x for all points of M.

Theorem 2.3. Let M be a connected and complete riemannian manifold.
If the sectional curvature K, of M satisfies 1/4 < K, < 1 for every plane
section ¢ and the diameter d(M) of M satisfies d(M) > w, then M is homeo-
morphic to S*.

By virtue of Theorem 2.2, it suffices to show the following proposition for a
proof of Theorem 2.3.

Proposition 2.4. Suppose that § =1/4 and d(M) > = hold, and set d(p, q)
= d(M). Then for any point r ¢ M, we have d(p,r) <= or d(q,r) <=.

In the following we prepare Lemmas 2.5-2.8 for a proof of Proposition 2.4.
The method is analogous to that of Berger [3].

Lemma 2.5 (Lemma 4 of Berger [3]). For any point re M, we have d(p, r)
<z ord(q,r) <=z or otherwise d(p,r) = d(q,r) = =.

Lemma 2.6 (Lemma 5 of Berger [3]). Suppose that there is a point re M
satisfying d(p,r) = d(q, r) = nt, where d(p, q) = d(M). For any shortest geodesic
Q ={pO} 0Lt <7, ¢0) =p, o(x) = r, let I" be a geodesic such that I
= {10} (0 <t < d(M)), 1(0) = p, M) = q and X ((0),¢'(0) < /2.
Then we have d(r, (1)) =« for all 0 < t < d(M) and there is a piece of totally
geodesic surface of constant curvature 1[4 with boundaries @, I' and ¥, where
¥ is a geodesic such that ¥ = {¥'(H} O <t < ), (0) = q, H(z) =1, and we
also have J (¢'(0),7(0) = z/2, I (F(dM)), ¢'(0) = =/2 and < (¢'(n),
¢(x)) = dM)/2.

We can prove Lemmas 2.5 and 2.6 in the same way as that stated in [3].

Lemma 2.7. Let N be defined by N = {xe M |d(x,y) > = /(24 3) for some
y € M} where § is any positive constant 0 < § < 1. For any fixed point x € N,
let © and O, be shortest geodesics of length n satisfying x = 68(0) = 6,(0), 6(x)
= 0(x) = z and §'(0) # £ 6(0). Then there exists a lune of totally geodesic
surface of constant curvature 1 with boundaries 6 and 6,.

Proof. @'(0) + +#,(0) implies clearly §'(z) #+ +6;(z) from Theorem 2.2.
Since N is open in M there is a point w e ® N N. It follows that d(w, 6,(2)) <=
for every t¢ [0, x] and exp, |U is a diffecomorphism, where U is an open ball
in M,, with radius = and center at the origin.

Let ©* = {#*(1)} (0 < t < x) be a great circle on S7. Take a point w* ¢ 8%
satisfying w* = 6*(¢)), where ¢, is defined by w = 6(z,). Let ¢ be an isometric
isomorphism of M., onto (S7),,. such that (0 #(z,) = 6*/(¢,) and put x* = §*(0),
Z* == §*(x). Then the curve BF = (exp,«o¢o(exp, | U)~) 0O, is a regular curve
which connects x* to z* and whose length is equal to = by Rauch’s metric com-
parison theorem [11]. Since @} becomes a great circle, we obtain a lune of
totally geodesic surface of constant curvature 1 with boundaries 6 and 6,.

Lemma 2.8 (Lemnma 6 of Berger [3]). Let M be a riemannian manifold
whose sectional curvature K, satisfies 6 < K, < 1 for every plane section o,
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and let X,Y and Z be tanget vectors at xe M such that Y + Z, K(X,Y) =
K(X,Z) =0and {Y,X> = (Z,X> > 0. Then we have K(Y,Z) < 1.

Proof of Theorem 2.3. Let I', @, 0 be the shortest geodesic segments join-
ing p to g, p to r and q to r respectively which are defined in such a way that
there is a piece of totally geodesic surface # of constant curvature 1/4 with
boundaries I", @ and 8. Developing the same discussion as Berger [3], there is
a shortest geodesic I', = {y,(0)} (0 < t < d(M)), 7,(0) = p, y(d(M)) = g which
satisfies I", # I and (7{(0), ¢'(0)> = 0. Therefore we have another totally geo-
desic surface %, of constant curvature 1/4 with boundaries I',, @ and 8,, where
O, is a shortest geodesic from g to r. Suppose that < (6°(0), 8;(0)) = =. We have
I (#'(7), 6(x)) = = and moreover & and &, have the same tangent plane at r.
Hence we get A (¢'(n), 6'(x)) = A (¢'(x), 6i(m)) = = /2, which imply d(M) = z.
Therefore we must have < (6'(0), 6;(0)) <=. Suppose that < (6(0), 6/(0))=0.
Then & and &, have a common tangent plane at g from which we get I' = T,.
Hence we have <{ (6'(0), 6,(0)) € (0, ), and Lemma 2.8 implies a contradiction.

3. Estimates of cut locus of 5-pinched manifold which
is not simply connected

In this section we shall investigate some estimates of cut locus of 3- pmched
riemannian manifold which is not simply connected.

Proposition 3.1. If M is not simply connected and 0 <& < 1, then
d(p, C(p)) < dM) < n/(2+/ §) for every point p e M. Suppose that there is a
point p € M at which d(p, C(p)) = =/(2+/ 8) holds. Then M is isometric to the
real projective space PR™(3) of constant curvature §.

Proof. Let M be the universal covering manifold of M and = be the pro-
jection map. There and at least two distinct points j,, j, of M such that z(5,)
= n(p,) = p. Let I" be a shortest geodesic joining 5, to 7,, and I" be a closed
geodesic segment at p defined by 7o' = I Then #(I") is not less than
2d(p,C(p)) = n/+/ 8, from which we have d(p,, 5, > n/+/5. Thus M is
isometric to S? .+ by the maximal diameter theorem of Toponogov [13]. Sup-
pose that there is a point 5, e M satisfying p, # p, # p, and #(p,) = p. Then
the perimeter of a geodesic triangle in M with vertices p,, 5, and j; is not less
than 3z/+/8, which is a contradiction. Therefore M must be a double covering
of M, and hence we get M = PR*(5).

Proposition 3.2. Let M be a 6-pinched riemannian manifold which is not
simply connected, and suppose that there is a point p ¢ M at which d(p, C(p))
> 7/(34/8) holds. Then the fundamental group of M is (M) = Z, or
otherwise, M is odd dimensional riemannian manifold of constant curvature 4.

Proof. 1f there are three different points p,, , and p, in M such that =(p,)
= 7(p,) = n(P;) = p € M, then we have d(j;, p;) > 2d(p, C(p)) > 2x/(3+/8) for
every i,j=1,2,3, i #j, and the perimeter of a geodesic triangle with vertices
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D1» P, and p; is not less than 27/ v/ 8, from which M is of constant curvature 4.
As is well known, an even dimensional complete riemannian manifold of con-
stant positive curvature is isometric to either a sphere or a real projective space.
Hence dim M must be odd.

Corollary to Proposition 3.2. Let M be a §-pinched riemannian manifold
which is not simply connected, and suppose that (M) + Z,. Then we have
d(x,C(x)) < n/(34/ 8) for any x e M. Furthermore if there is a point x e M at
which d(x, C(x)) = n/(34/3), then M is an odd dimensional riemannian mani-
fold of constant curvature §.

We shall give some estimates of cut loci under the assumption 6 > 1/4 and
certain assumptions for. the fundamental groups of pinched manifolds.

Theorem 3.3. Suppose that § satisfies 6 > 1/4 and M is not simply con-
nected. Then there does not exist any 5-pinched riemannian manifold M whose
diameter satisfies ©/(24/3) < d(M) < x. In particular if the fundamental group
n(M) of such M satisfies n,(M) = Z,, where k is an integer not less than 2,
then we have d(x,C(x)) > =z/k for every point x e M. Moreover if there is a
point xeM where d(x,C(x)) = n/k is satisfied, then M is of constant
curvature 1.

Proof. The first statement is evident from Proposition 2.1 and the Theorem
of Klingenberg [8]. Suppose that the fundamental group =, (M) of M satisfies
n(M) = Z,, where k is an integer such that £ > 2. Since the function p —
d(p, C(p)) is lower semi-continuous, there is a point p, ¢ M at which the function
takes infimum p. We have a closed geodesic X' = {a(1)} (0 < ¢t < 2p) such that
a(0) = o(2p) = p, and p = d(p,, C(p,)). Then there exists a closed geodesic 3
in M satisfying z o J=17. By virtue of =, (M) = Z,, we have L) = 2pk. On
the other hand, every closed geodesic segment in M has length no less than 2z.
Hence we have p > #/k.

If there is a point x € M at which d(x, C(x)) = = /k holds. Then we have p
= r/k and £(3) = 2z. We shall prove that C(j,) consists of only one point
{#(x)}. In fact, if there is a point § in C(,) such that § = G(x), then let ¥ be
a shortest geodesic from §(x) to §. Without loss of generality we can assume
that (&'(x), ¢'(0)> > 0. For a geodesic triangle (£ | [z, 2x], ¥, §) with vertices
Do, 8(z) and g, we have a contradiction to the basic theorem on triangles, be-
cause z > n(24/ 6) holds.

Remark. If the diameter d(M) of M with § > 1/4 satisfies d(M) = =z, then
M is isometric to S7. Furthermore, if there is a closed geodesic segment of length
2z in such a simply connected M, then M is isometric to S7.

4. Topological structures of M satisfying 6 > 1/4 and »,(M) = Z

Throughout this section we only consider M satisfying § > 1/4 and =(M)
= Z, First of all we shall prove the following lemma.
Lemma 4.1. Take a pair of points p, qe M such that d(p, q) = d(M). Then
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there is a closed geodesic I'={y(1)} (0 < t < 2d(M)) such that 7(0) = y(2d(M))
=p and y(dM)) = q

Proof. From the assumptions § > 1/4 and =,(M) = Z,, we have d(M) <
r/2v8) < Let I' = {r®} (0 < t < d(M)) be a shortest geodesic from p to
q. Since d(p,q) = d(M), there is a shortest geodesic I';, I', = {r,(H} (0 < ¢
< d(M)) from p to g satisfying {4/(d(M)), —7(d(M))> > 0. Suppose that
I GF(dM), rni(d(M))) = =. Then there is a shortest geodesic I, from p to g
satisfying (y(d(M)) + Tl(d(M)), TZ(d(M))) > 0. Take a fixed point pleM
such that 7(p,) = p, and let I, I, and I, be geodesics in M which satisfy z o I’
=T, goly=T, and nol, = TI',, and start from p,. Since there are
just two points in M, whose images under = are g, we may consider that f’,
and I7, have same extremals. But we have d(p,, C(p,)) > = by the theorem of
Klingenberg [8]; this is a contradiction. Therefore we must have < (y(d(M),
71dM))) = = and L ¢'(0),71(0) = =.  q.e.d.

Making use of Lemma 4.1, we have the following:

Theorem 4.2. For any point xe M, /2 < d(x, C(x)) < 7/(2vV9) and x/2
< dM) < 7/(24/3), where the left hand side equalities hold if and only if M
is isometric to the real projective space PR"(1) of constant curvature 1, and the
right hand side equalities hold if and only if M is isometric to PR"(3) of con-
stant curvature §.

Proof. It suffices to prove that M is isometric to PR*(8) if d(M) = z/(2v/5).
Putting d(p, q) = d(M) = z/(24/3), there is a closed geodesic I" = {T(t)} o0<s
< 7/4/9) satlsfymg 7(0) = y(z/+/8) = p and 7(®[(2v/8)) = q. Let I be the
closed geodesic in M defined by 7o/ = I". Then I" becomes a closed geodesic
with length 27/ /'8, and we can decompose [ into four shortest geodesic segments
whose lengths are not equal at the same time. A theorem investigated by Sugi-
moto in [12] thus shows that M is isometric to S5, and hence M is isometric
to PR™(3). q.e.d.

Now we shall investigate the topology of M satisfying z /2 < d(M) <z/(2v3).
According to the homology theory, M has the same homology group as that
of PR under our assumptions z,(M) = Z, and M is homeomorphic to S*.

There is an interesting problem which is not yet solved completely.

Problem. Let j be a homeomorphism of S* onto itself satisfying:

(1) jis fixed point free,

(2) jis involutive.

Then, is $*/j homeomorphic to PR*?

Livesay proved this problem affirmatively in [10] under the assumption n< 3.
When j is a diffeomorphism or a piecewise linearly diffeomorphism, Hirsch and
Milnor showed in [6] that $*/j is not diffeomorphic or piecewise linearly diffeo-
morphic to PR™ in general.

Turning to our situation that § > 1/4 and =, (M) = Z,, we shall prove that
M is homeomorphic to $*/j, where j is a homeomorphism of S§* onto itself with
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the properties (1) and (2) stated above. For the construction of j, we prepare
Lemmas 4.3-4.6 below. We set d(p, q) = d(M) = I. and the closed geodesic

= {0} 0 <t <2D, 10 = y2) = p, and y(l) = g as stated in Lemma
4 1. Then there exists a closed geodesic I” in M satisfying z o I' = I, and there-
fore we have Z(I") = 4l.

Lemma 4.3. Putting p, = §0), 4, = 7D, p, = 72D and §, = 73D, for
any point % € M we have d(%, p,) < n/(2x/6) or d(%, p,) < n/(2x/5)

Proof. We may suppose that % ¢ I". Take a point Z on r satisfying d(%, I")
= d(%,7). It follows d(%, 7) < x/(2+/ 5) by use of the second variation formula
(Proposition 3 of [1]). Without loss of generality we may also suppose that
d(p,, 7)) <1< x/(24/5). Making use of the basic theorem on triangles for a geo-
desic triangle with vertices (,,Z, ¥), we thus have d(p,, %) < =/ (24/8).

q.e.d.

Now, let U, and U, be open balls with radius = centered at the origin in M,
and M, respectively. Then exp;;, | U, is a diffeomorphism. Let D be the standard
n-cell with boundary D = §*-! C R*, and let ¥, and V, be given as follows:

V,={¥eM|dRX, p) < d(, B}, V,= {feM|dR, p) = dZ, b))} .

We have a construction of a homeomorphism % of $* onto M investigated by
Klingenberg in {7] as follows.

Lemma 4.4. There are homeomorphisms h, and h, such that h;: D — V,
satisfying h(D) =V, h(D)U h(D) = M and h(D) N hy(D) = h(S*"!) =
h,(S*"Y). Making use of h, and h,, we have a homeomorphism h: S* — M.

On the other hand, by virtue of the hypothesis #,(M) = Z, we have a map
f of M onto itself defined by f(%) = %, for any %, ¢ M, where z(%) = a(%,),
X, # %,. Then clearly we have the following:

Lemma 4.5. f satisfies the following:

(a) fisan isometry.

(b) fis involutive.

(c) f has no fixed point.

(@) foI' =T, where I is stated in Lemma 4.3.

Combining Lemmas 4.4 and 4.5, we get

Lemma 4.6. We have f(V)) =V, and f(V,) = V,. In particular f(p,) = p,.

Proof. foI' = I implies f(5,) = p, Take a point ¥ e V', N V,. Then there
exist uniquely determined shortest geodesics 4 and @ joining p, to ¥ and j, to
% respectively. Thus [ and @ have the same length which is not greater than
7/(24/3), an dthe intersection of fo 4 and f - & must coincide with f(¥). Hence
we get f(X¥) e V, N V,, from which the statements follow. q.e.d.

Combining Lemmas 4.3-4.6, we find the following:

Theorem 4.7. Let j be defined by j = h™'ofoh. Then M is homeomorphic
to S*|j, and j satisfies (1) and (2) in the problem stated above.

Remark. According to [10], Livesay proved that $*/j is homeomorphic
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to PR" if n < 3. But in our case, we shall be able to prove that M is homeo-
morphic to PR™ if n < 4. Since V', V, is homeomorphic to PR® (in case n = 4),
(c) in Lemma 4.5 implies the statement.

Putting p¥ = h~'(p,), p} is the antipodal point of p} on S?. Hence the image
of every great circle from p¥ to p¥ under j is also a great circle from p¥ to p¥.

5. Proof of the main theorem

Throughout this section, let ¥ be an odd prime. Let M be a §-pinched
(6 > 1/4) riemannian manifold whose fundamental group =,(M) satisfies z,(M)
= Z,. Then we shall prove the following:

Theorem 5.1. Let M be a connected, complete and orientable riemannian
manifold of dimension 3 satisfying § > 1/4 and n (M) = Z,, and suppose that
there is a closed geodesic segment I of length 2z | k. Then M is isometric to the
lens space L(1, k) of constant curvature 1.

Our method of the proof is as follows:

Put M* = L(1,k) and take two arbitrarily fixed points p* e M* and pe M
respectively. It is clear that M is of constant curvature 1. It is easily seen that
for any tangent vector X* ¢ M}, satisfying X* e C,., we have X* ¢ Q%, where
QjF. is the first conjugate locus in M}, Then there is at least one tangent vector
Y* e C¥%, which satisfies exp,. X* = exp,» Y* ¢ C(p*). We shall prove that there
is an isometric isomorphism ¢ of M, onto M3. such that ((C,) concides with
C¥ C M3} as asetin M3}, and moreover the identifying structures of C, under
exp, and C} under exp,. are quite equivalent under (. That is to say, let
X,YeC, and exp,X =exp,YeC(p). Then we have exppcoX =
exp,«¢o Y € C*(p*). Hence exp,.cccexp,' becomes a global isometry of M
onto M*,

As the first step, we study the tangent cut lous C, of M. Theorem 3.3 and
the hypothesis of M imply that M is of constant curvature 1. Then the universal
covering manifold M is S3.

Lemma 5.2. Let M satisfy the assumptions of Theorem 5.1. Then d(q, C(q))
=z /k for any point ge M.

Putting / = d(q, C(g)), there is a closed geodesic segment 3, of length 2! such
that ¢,(0) = ¢,(2)) = q. Then we have a great circle £ in S} = M satisfying
705 = 3, on which we get n(6,(0)) = 2(6,2D)) = - -+ = 7(3,(2kD)) = q.
Hence we have 24l = 2. g.e.d.

We denote by X', the closed geodesic at g with length 2z/k.

Lemma 5.3. Max {d(q, x)|x € M} =r/2 for any point q ¢ M. In particular,
dM) = z/2.

Proof. Putting | = d(g, r) = Max {d(q, x) | x € M}, there is a closed geodesic
Y, = {g,(0)} (0 < t < 2x/k) such that ¢,(0) = ¢,(2x/k) = r. By the assump-
tion of d(g, r), there are at least two shortest geodesic segments joining g to r,
say I'; and I',. Suppose that < (¥(D, 75(D) = . Since [ < d(M) < n/(2v/5)



S-PINCHED MANIFOLDS 71

= 7/2 and k is an odd prime, there exist at least & + 1 points on S5} whose
images under x are all g. Then we must have < (¥{(D), 5()) # =, from which
there is another shortest geodesic I'; from g to r such that {5{(D + ri(D, — (D>
> 0. Let § ¢ M be a fixed point such that z(§) = g, and I’; be defined by
mol'y=1T; and 70) = § (i = 1,2,3). It is clear that the geodesic given
by mo3 = X, is a great circle on which lie the points #,(!), 7,()) and #,()).
Three geodesic triangles with vertices (7, 7,(), 7,(D), (¢, 7,(D), 7:(D) and (§, 7,(D),
7:(D)) respectively become isosceles triangles whose base angles are all equal to
r/2. Therefore we must have | = x/2 by the cosine rule of spherical trigo-
nometry.

Lemma 5.4. Let q,p e M be a fixed pair of points such that d(p, @) ==/[2.
Then there are shortest geodesics I';; Iy, -, 'y from p to q satisfying the
following:

(1) X GUOY, 71,000 = X Gilw]2), 1w [2)) =2z ]k forall i = 1,2, .. .,
k, (mod k).

(2) There is a piece of totally geodesic surface F} of constant curvature 1
whose boundaries are I';,I";,, and % ,.

(3) It can be considered that F; is generated by the family of shortest
geodesics {/,} (0 <t < 2x) where each A, starts from c,(f) and ends at q with
length £(A,) = n/2. Moreover, we can consider that A, = I'y and A,
= I'y, and the vector field t — 2,(0) is parallel along % ,.

(4) Putting o'y = I'; such that Fx/2) = q where n(q) = g, each F} is
covered by the face of geodesic triangle (FZ,F HI,Z [2z(G — D[k, 27i[k])
under the covering map w, where o 2 5 = 2,6;(0) = p. In particular,
FrUFFU ... UZF{ is the image of the two dimensional hemisphere with
north pole § and equator 5 5 under .

Proof Let S%(g) be the totally geodesic hypersurface of S}, which contains
g and 2 and 52(q) be the hemisphere with north pole §. For a geode51c
segment AL in 8% (¢) joining ¢;(#) to ¢ and the corresponding geodesic 4, =z o 4,
in M joining o,(?) to q, makmg use of Rauch’s comparison theorem we get the
statements (2), (3) and (4). Since we have < (7(z/2), 7;,,(=/2)) = L (i(=/2),
7ia(®/2)) = 2k for i =2,3,...,k — 1, we get < (7i(0), 7i,,(0) = 2z /k
by exchanging the situation of p for the one of g. q.e.d.

Letusput F* =%} UF; U-.- UZF¢. Since d(p, o,(z/k)) = =/2 holds,
o (n k) is able to take place for g in the Lemma 5.2-5.4. Then we have a piece
of totally geodesic hypersurface % of constant curvature 1 with boundaries
' [—=/2,0], I';,,|[—=/2,0] and X, which is a prolongation of &}. Putting
F-=F;UZF;U- - UZF;, we get acompact totally geodesic hypersurface
For = F+ |J) %~ which is the image z(5%(q)) of $%(g) C S% under the covering
map =. It is clearly seen that & %7 covers 2k times, and its tangent space
(F%7), at p consists of k-sheeted planes (#; U 9";)1,, L (FEUSF ‘)p each
of which contains ¢,(0) and the angle between (F; U#;), and (¥}, U F .1,
is equal to 2=z /k.
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Lemma 5.5. The cut locus of the totally geodesic hypersurface m(S§))
= F @ with respect to p consists of A, |[—=/2,7/2], Ay |l—7/2,7/2] and
Age—yape|l—7/2, 2], which is contained entirely in the cut locus C(p) of M.

Proof. By the construction of # %7, the first statement is evident. Suppose
that there is a shortest geodesic of M from p to 2,,,(s) € #%? which is not con-
tained in % %?. Then there are at least ¥ + 1 points in $? whose images under
m are ,,(s). Hence p and 1,,,(s) can be joined by shortest geodesics of M which
lie in For, q.e.d.

By exchanging g (north pole) and %, (equator) for p and %', respectively,
we get a compact totally geodesic surface # ¢ instead of % %? whose tangent
space (F7:9), at p is the plane in M, orthogonal to ¢7,(0). Therefore we get
the family of compact totally geodesic hypersurfaces {#*2®?} (0 < t < 27),
and M can be considered to be constructed by this family of hypersurfaces.

Lemma 5.6. Let (e, ¢;, e;) be an orthonormal basis for M, such that e, =
0,(0) and e, = y,(0). Then for any X ¢ C, given by

X/l X|| = e,cosa + ¢,sinwcos f + e;sin asin §
O<La<2r,08<20),

we have || X|| = cot™! (cos a cot n/k). Let X, C, be defined by exp, X, =
exp, X € C(p), where X is given by the above equation and o + /2. Then we
have

X, = cot! (cos « cot w/k)[e;, cos (x — @) + e, 5in (x — ) cos (B + 2x/k)
+ e, sin (x — @) cos (B + 2x/k)] .

Hence the identifying structure of C, under exp, is completely known.

Proof. Since d(p, o,(f)) = = /2 holds for all £ ¢ [0, 2], there exist ¢, and the
compact totally geodesic hypersurface F¢“? a sheet of whose tangent planes
at p is spanned by e, and e,cos 8 + e, sin . Then we find ¢, = 8, and also see
that #° "2 is obtained by z(5%(¢(8))). There is a geodesic triangle on $%(&(3))
with vertices exp; X, p and ¢;(2n/k) satisfying < (exp; X, p, 6;(2x/k)) =
I (exp; X,65(2n/k), ) = a, where we define da(X) = X, X ¢ M;. Then the
cosine rule of spherical trigonometry implies that || X{| = cot™! (cos « cot n/k).
It is easily seen that <{ (X,,d,(0)) = 7 — X (exp; X, d;(27/k), p) = 7 — «
because « is a local isometry.

Remark. As for a vector X = (w/2)e,cos § + & sin f§), putting X, =
(z/2){e,cos (8 + 2mi/k) + eysin (B + 2xi/k)}, i=1,2, ---, k we have exp, X,
= exp, X.

As the final step, we shall study the tangent cut locus C¥. of the lens space
M* = L(1, k). The universal covering manifold of M* is §3. Let ge G be the
generator of the cyclic group G of order &, where k is an odd prime.

k
For arbitrary point % ¢ S, we have J, g/(¥)=0, from which the points g(%),
i=1
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-, g%(%) = X lie on a great circle of S} and divide the great circle into equal
parts of length 2xk. Putting x* = =(%), there is a closed geode51c in M* with
length 2z/k which starts at x* and is obtained from the image of the great
circle containing g*(x) under z. We also see that Max {d(x*, y*)|y* e M}=z/2.

Let (u, v, w) be a local coordinate system of $? defined by

x(u,v,w) = cosucosv-E, + sinucos v E,

+ coswsinv-E, + sinwsinv-E, ,

where (E,, E,, E,, E)) is the orthonormal basis for R*. A totally geodesic hyper-
surface S*(§) is expressed locally by w = w, which is a two-sphere in $? with
the north pole ¢ given by g = cos w,-E, + sin w,-E, and the equator given by
u — cos u-E, 4+ sin u-E,. Since $*(§) is of constant curvature 1 and r is a local
isometry, z(S*g)) is also compact and of constant curvature 1 with self inter-
section in such a way that the image of equator is a closed geodesic of length
2z /k and is covered k times by the equator u — cos u-E, + sin u-E,. We see
that any other point on 7(5%q)) has no intersection.

Let Z'- = {65} (0 < u < 27) be defined by ;(u) = cos u-E, -l— sinu- E,
where we put § = (1,0,0,0) or j(u, v,w) = (0,0, O) and #(p) = p*. We see
that the cut locus of #(S*(§)) with respect to p* ¢ z(S%(3)) is contained entirely
in the cut locus C*(p*) of M*. Putting 4, = {1,(»)} (0 < v < =/2), 1,(0) =
63(w) and ,(n/2) = §, no Z5 = I%, ¢%(0) = p* and mod, = A%, 2¥(0) =

o¥(u), the cut locus of z($%(g)) with respect to p* = g}J(0) is the set
{4 |[—=/2, 7r/2]|u =Q2i - Dr/k,i=1,2, , k}. Denoting by I, the
geode51c in 82 j ]ommg d;(2zi/k) to g, i.e., I, = Az,”/k, we see the angle between
glol;and g’ o [y  at jis equal to 27r/k for every ],z_ 1,2, , k (mod k).
This fact shows that the angle between ' and I'¥,, at p* is equal to 27r /K fori=
1, - - ., k. We also see that the angle between 2%, and I'} is equal to = /2.

Denoting F* = n(8%§)), where g* = n(§), we have the same arguments
for the tangent space (& ¢"#*) ,, at p* as those of # %7, and the family {# **¢*®#*}
(0<t<2rx) generates M*. Then we have the same argument as that in Lemma
5.6 for C} C M¥%.. ‘
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